University of Surrey

Test tubes in the lab Research in the ATI Dance Research

Quantitative evaluation of artifact removal in real magnetoencephalogram signals with blind source separation.

Escudero, J, Hornero, R, Abásolo, D and Fernández, A (2011) Quantitative evaluation of artifact removal in real magnetoencephalogram signals with blind source separation. Ann Biomed Eng, 39 (8). pp. 2274-2286.

Escudero_et_al_AnnBiomedEng_final_version_2011.pdf - Accepted version Manuscript
Available under License : See the attached licence file.

Download (240kB)
[img] Text (licence)

Download (1kB)


The magnetoencephalogram (MEG) is contaminated with undesired signals, which are called artifacts. Some of the most important ones are the cardiac and the ocular artifacts (CA and OA, respectively), and the power line noise (PLN). Blind source separation (BSS) has been used to reduce the influence of the artifacts in the data. There is a plethora of BSS-based artifact removal approaches, but few comparative analyses. In this study, MEG background activity from 26 subjects was processed with five widespread BSS (AMUSE, SOBI, JADE, extended Infomax, and FastICA) and one constrained BSS (cBSS) techniques. Then, the ability of several combinations of BSS algorithm, epoch length, and artifact detection metric to automatically reduce the CA, OA, and PLN were quantified with objective criteria. The results pinpointed to cBSS as a very suitable approach to remove the CA. Additionally, a combination of AMUSE or SOBI and artifact detection metrics based on entropy or power criteria decreased the OA. Finally, the PLN was reduced by means of a spectral metric. These findings confirm the utility of BSS to help in the artifact removal for MEG background activity.

Item Type: Article
Divisions : Faculty of Engineering and Physical Sciences > Mechanical Engineering Sciences
Authors :
Escudero, J
Hornero, R
Abásolo, D
Fernández, A
Date : August 2011
DOI : 10.1007/s10439-011-0312-7
Additional Information : The original publication is available at
Depositing User : Symplectic Elements
Date Deposited : 09 Dec 2011 09:56
Last Modified : 31 Oct 2017 14:16

Actions (login required)

View Item View Item


Downloads per month over past year

Information about this web site

© The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
+44 (0)1483 300800